SMED (Single-Minute Exchange of Die)

Changeover times can be dramatically reduced – in many cases to less than 10 minutes. Each element of the changeover is analyzed to see if it can be eliminated, moved, simplified, or streamlined.

What Is SMED?

SMED (Single-Minute Exchange of Die) is a system for dramatically reducing the time it takes to complete equipment changeovers. The essence of the SMED system is to convert as many changeover steps as possible to “external” (performed while the equipment is running), and to simplify and streamline the remaining steps. The name Single-Minute Exchange of Die comes from the goal of reducing changeover times to the “single” digits (i.e., less than 10 minutes).

SMED Benefits

A successful SMED program will have the following benefits:

  • Lower Manufacturing Cost: faster changeovers mean less equipment downtime
  • Smaller Lot Sizes: faster changeovers enable more frequent product changes
  • Improved Responsiveness to Customer Demand: smaller lot sizes enable more flexible scheduling
  • Lower Inventory Levels: smaller lot sizes result in lower inventory levels
  • Smoother Startups: standardized changeover processes improve consistency and quality
The Manufacturing Productivity Improvement Device That Feels Like MagicIn less than 8 hours you can benefit from automated, real-time accurate data.Learn About Vorne XL
XL HD Run Screen

Basics of SMED

SMED was developed by Shigeo Shingo, a Japanese industrial engineer who was extraordinarily successful in helping companies dramatically reduce their changeover times. His pioneering work led to documented reductions in changeover times averaging 94% (e.g., from 90 minutes to less than 5 minutes) across a wide range of companies.

Changeover times that improve by a factor of 20 may be hard to imagine, but consider the simple example of changing a tire:

  • For many people, changing a single tire can easily take 15 minutes.
  • For a NASCAR pit crew, changing four tires takes less than 15 seconds.

Many techniques used by NASCAR pit crews (performing as many steps as possible before the pit stop begins; using a coordinated team to perform multiple steps in parallel; creating a standardized and highly optimized process) are also used in SMED. In fact, the journey from a 15-minute tire changeover to a 15-second tire changeover can be considered a SMED journey.

In SMED, changeovers are made up of steps that are termed “elements”. There are two types of elements:

  • Internal Elements: elements that must be completed while the equipment is stopped
  • External Elements: elements that can be completed while the equipment is running

The SMED process focuses on making as many elements as possible external and simplifying and streamlining all elements.

Diagram showing the three major phases of SMED (Single-Minute Exchange of Die).
The SMED system has three major phases as shown above. These phases are performed in sequence and the entire sequence can be iterated (repeated).

SMED Example

An excellent way to learn more about SMED is to walk through an implementation example. This section provides a step-by-step roadmap for a simple and practical SMED implementation.

Before Starting

Virtually every manufacturing company that performs changeovers can benefit from SMED. That does not mean, however, that SMED should be the first priority. In the real world, companies have finite resources, and those resources should be directed to where they will generate the best return.

So what should be the first priority? For most companies, the first priority should be ensuring that there is a clear understanding of where productive time is being lost and that decisions on improvement initiatives are made based on hard data. That means putting a system in place to collect and analyze manufacturing performance data.

The de facto “gold” standard for manufacturing performance data is measuring OEE (Overall Equipment Effectiveness) with an additional breakdown of OEE loss categories into the Six Big Losses and a detailed breakdown of OEE Availability losses into Downtime Reason Codes (including codes for tracking changeover time).

Once a system for measuring manufacturing performance is in place collect data for at least two weeks to gain a clear picture of where productive time is being lost.

SMEDIf changeovers represent a significant percentage of lost productive time (e.g., at least 20%) consider proceeding with a SMED program.
TPMOtherwise, consider first focusing on a TPM (Total Productive Maintenance) program.

Step One – Identify Pilot Area

In this step, the target area for the pilot SMED program is selected. The ideal equipment will have the following characteristics:

DurationThe changeover is long enough to have significant room for improvement, but not too long as to be overwhelming in scope (e.g., a one hour changeover presents a good balance).
VariationThere is large variation in changeover times (e.g., changeover times range from one to three hours).
OpportunitiesThere are multiple opportunities to perform the changeover each week (so proposed improvements can be quickly tested).
FamiliarityEmployees familiar with the equipment (operators, maintenance personnel, quality assurance, and supervisors) are engaged and motivated.
ConstraintThe equipment is a constraint/bottleneck – thus improvements will bring immediate benefits. If constraint equipment is selected, minimize the potential risk by building temporary stock and otherwise ensuring that unanticipated downtime can be tolerated.

In order to create a wide base of support for the SMED project, include the full spectrum of associated employees in the selection process, and work hard to create a consensus within the team as to the target equipment choice.

Once the target equipment has been selected, record a baseline time for the changeover. Changeover time should be measured as the time between production of the last good part (at full speed) and production of the first good part (at full speed). Be cognizant of the “Hawthorne Effect”; changeover times may temporarily improve as a simple result of observing the process. When possible, use prior data to baseline the changeover time.

Step Two – Identify Elements

In this step, the team works together to identify all of the elements of the changeover. The most effective way of doing this is to videotape the entire changeover and then work from the videotape to create an ordered list of elements, each of which includes:

  • Description: what work is performed
  • Cost in Time: how long the element takes to complete

Some useful tips for this step:

ElementsA typical changeover will result in 30 to 50 elements being documented.
Sticky NotesA fast method of capturing elements is to create a series of post-it notes that are stuck to a wall in the order in which they are performed during the changeover.
Man and MachineBe sure to capture both “human” elements (elements where the operator is doing something) and “equipment” elements (elements where the equipment is doing something). As discussed later, the human elements are usually easiest to optimize.
Other NotesWhile videotaping the changeover have several observers taking notes. Sometimes the observers will notice things that are missed on the videotape.
ObserveOnly observe – let the changeover take its normal course.

The deliverable from this step should be a complete list of changeover elements, each with a description and time “cost”.

Step Three – Separate External Elements

In this step, elements of the changeover process that can be performed with little or no change while the equipment is running are identified and moved “external” to the changeover (i.e., performed before or after the changeover). It is not unusual for changeover times to be cut nearly in half with this step alone.

For each element the team should ask the following question: Can this element, as currently performed or with minimal change, be completed while the equipment is running?

If the answer is yes, categorize the element as external and move it before or after the changeover, as appropriate.

Examples of candidate elements for such treatment include:

RetrievalRetrieval of parts, tools, materials, and/or instructions.
InspectionInspection of parts, tools, and/or materials.
CleaningCleaning tasks that can be performed while the process is running.
QualityQuality checks for the last production run.

The deliverable from this step should be an updated list of changeover elements, split into three parts: External Elements (Before Changeover), Internal Elements (During Changeover), and External Elements (After Changeover).

Step Four – Convert Internal Elements to External

In this step, the current changeover process is carefully examined, with the goal of converting as many internal elements to external as possible.

For each internal element, the team should ask the following questions: If there was a way to make this element external, what would it be? How could we do it?

This will result in a list of elements that are candidates for further action. This list should be prioritized so the most promising candidates are acted on first. Fundamentally, this comes down to performing a cost/benefit analysis for each candidate element:

  • Cost as measured by the materials and labor needed to make the necessary changes.
  • Benefit as measured by the time that will be eliminated from the changeover.

Once the list has been prioritized work can begin on making the necessary changes.

Examples of techniques that can be used to convert internal elements to external are:

Advance PreparationPrepare parts in advance (e.g., preheat dies in advance of the changeover)
JigsUse duplicate jigs (e.g., perform alignment and other adjustments in advance of the changeover)
ModularizeModularize equipment (e.g., replace a printer instead of adjusting the print head so the printer can be configured for a new part number in advance of the changeover)
ModifyModify equipment (e.g., add guarding to enable safe cleaning while the process is running)

The deliverable from this step should be an updated list of changeover elements, with fewer internal elements, and additional external elements (performed before or after the changeover).

Step Five – Streamline Remaining Elements

In this step, the remaining elements are reviewed with an eye towards streamlining and simplifying so they can be completed in less time. First priority should be given to internal elements to support the primary goal of shortening the changeover time.

For each element, the team should ask the following questions: How can this element be completed in less time? How can we simplify this element?

As in the previous step a simple cost/benefit analysis should be used to prioritize action on elements.

Examples of techniques that can be used to streamline elements are:

ReleaseEliminate bolts (e.g., use quick release mechanisms or other types of functional clamps)
AdjustmentEliminate adjustments (e.g., use standardized numerical settings; convert adjustments to multiple fixed settings; use visible centerlines; use shims to standardize die size)
MotionEliminate motion (e.g., reorganize the work space)
WaitingEliminate waiting (e.g., make first article inspection a high priority for QA)
StandardizingStandardize hardware (e.g., so fewer tools are needed)
OperationsCreate parallel operations (e.g., note that with multiple operators working on the same equipment close attention must be paid to potential safety issues)
MechanizeMechanize (normally this is considered a last resort)

The deliverable from this step should be a set of updated work instructions for the changeover (i.e., creating Standardized Work) and a significantly faster changeover time!

Accelerate Progress

When implementing SMED, it is helpful to recognize that there are two broad categories of improvement:

  • Human: achieved through preparation and organization
  • Technical: achieved through engineering

Experience has taught that the human elements are typically much faster and less expensive to improve then the technical elements. In other words, the quick wins are usually with the human elements. Avoid the temptation, especially with technically proficient teams, to over-focus on technical elements. Instead, focus first on the human elements.

The following chart illustrates this principle, showing example areas of opportunity for SMED projects.

Improvement chart showing human and technical improvements for implementing SMED.
Avoid the temptation, especially with technically proficient teams, to focus on technical improvements. Instead, focus first on human improvements.


1. Learn more about how our product, Vorne XL, can help you eliminate waste and significantly improve OEE.

Vorne XL is the simplest and fastest way to monitor and improve production. It's a one-time cost and takes just a day to install. And you can try it completely free for 90 days.

Learn More

2. Download our FREE package of tools to supercharge your manufacturing productivity

The package includes leadership lessons, training guides, meeting and report templates, summaries of key concepts, project organizers, and more. You'll also receive our monthly newsletter for free. Unsubscribe at any time.


3. Sign up for our monthly newsletter

Get free monthly updates with proven methods for improving our manufacturing productivity. Unsubscribe at any time.